Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37237822

RESUMO

Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.

2.
Beilstein J Nanotechnol ; 14: 165-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761674

RESUMO

Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.

3.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432356

RESUMO

Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.

4.
Mater Sci Eng C Mater Biol Appl ; 109: 110539, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32229000

RESUMO

Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensitized oxygen activation. In such a way, GQDs can be used as a theranostic agent in photodynamic therapy. In this work pristine GQDs, GQDs irradiated with gamma rays and GQDs doped with N and N, S atoms are produced using a simple, green approach. By using different techniques (AFM, HR-TEM, SEM-EDS, FTIR, XRD, PL and UV-Vis) we investigated structural and optical properties of the new types of GQDs. We showed that GQDs functionalized with thiourea (GQDs-TU) completely lost the ability to produce singlet oxygen (1O2) upon photoexcitation while functionalization with urea (GQDs-U) improves the capability of GQDs to produce 1O2 upon the same conditions. Thus, presented GQDs modification with urea seems like a promising approach for the production of the efficient photosensitizer. On the opposite, GQDs-TU are efficient OH quencher. Due to high singlet oxygen production and low cytotoxicity below 100 µg/mL against HeLa cells, GQDs-U is a good candidate as an agent in photodynamic therapy at this concentration.


Assuntos
Grafite , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pontos Quânticos , Oxigênio Singlete/química , Tioureia , Grafite/química , Grafite/farmacologia , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Tioureia/química , Tioureia/farmacologia
5.
J Photochem Photobiol B ; 200: 111647, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31648133

RESUMO

Photoactive materials called photosensitizers can be used for treatment of different types of cancer in combination with light source. In this paper, we have investigated pro-oxidant and antioxidant potentials of four graphene based nanomaterials (graphene oxide-GO, graphene quantum dots-GQDs, carbon quantum dots-CQDs and N-doped carbon quantum dots-N-CQDs) depending on the presence/absence of visible light source. Structural and optical properties of these materials and their potentials for reactive oxygen species generation/quenching are investigated by applying different microscopy and spectroscopy techniques (transmission electron microscopy, FTIR, UV-Vis, photoluminescence, electron paramagnetic resonance). Results show that all types of quantum dots has pro-oxidant and antioxidant potentials whereas GO demonstrated only moderate antioxidant effect. The best free radical scavenger is CQDs sample in the absence of light. CQDs are the best singlet oxygen generator under blue light irradiation as well. To check photo-cytotoxicity of these materials, photo-cytotoxic concentrations of the GO, GQDs, CQDs and N-CQDs were determined for three cellular lines: human rhabdomyosarcoma (RD), cell line derived from human cervix carcinoma Hep2c (HeLa) and fibroblast cell line from murine (L2OB). Cytotoxicity test has indicated that all samples are much less photocytotoxic than cis-diamminedichloroplatinum (cis-DPP). The production method and doping of quantum dots affect the photodynamic activity of tested samples very much.


Assuntos
Antioxidantes/química , Grafite/química , Oxidantes/química , Carbono/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Grafite/toxicidade , Humanos , Microscopia Confocal , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...